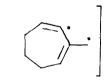

THERMAL REARRANGEMENT OF SOME [1.1.1] PROPELLANES

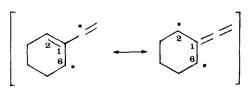
Johannes Belzner and Günter Szeimies* Institut für Organische Chemie der Universität München Karlstraße 23, D-8000 München 2, Germany

<u>Summary</u>: Thermal isomerization of [1.1.1]propellane $\underline{1}$ in a flow system at 370°C led to a 3:2 mixture of bicyclo[5.1.0]octa-1,6-diene ($\underline{5}$) and 6-vinylidenebicyclo[3.1.0]hexane ($\underline{6}$). At 430°C, propellanes $\underline{2}$ and $\underline{3}$ were converted into 1,2-divinylcyclopropene ($\underline{7}$), and, respectively, into dimethylenecyclopropane ($\underline{9}$).

Whereas [1.1.1]propellanes can now be easily synthesized from the corresponding bicyclo[1.1.0]butanes,¹ the chemistry of this intriguing system has not yet been fully established.² Here we wish to report on results concerning the thermal behavior of the [1.1.1]propellanes 1, 2 and the parent hydrocarbon 3.

A solution of $1 \le C_6 D_6$, sealed in an NMR tube under nitrogen, was kept in a 140°C bath and the decrease of the concentration of $1 \le 1$ was monitored by ¹H NMR spectroscopy. After 30 min., the signals of $1 \le 1$ had disappeared. Besides some polymeric material, bicyclo[4.2.0]octa-1,6-diene ($\frac{4}{2}$) was the only product. As $\frac{4}{2}$ had also been observed as the major component of the Rh(I) ion catalyzed isomerization of $1 \le 3$ suspicion arose that $\frac{4}{2}$ might not be the product of the thermal rearrangement of $1 \le 1$, but might be formed in a process catalyzed by traces of unknown electrophiles. Therefore, pyridine- d_5 was chosen as solvent. At 140°C, the ¹H NMR signals of $1 \le 1$ had vanished after 9 hours, but only polymeric material was formed.


Better insight into the thermal behavior of $1 \le 1$ was obtained, when $1 \le 1$ was distilled at 0.1 torr through a 40 cm Pyrex tube placed in an electric furnace at 370°C. The condensed material consisted of a 1:6:4 mixture of $1 \le 5$ and $6 \le 1$. Subjecting this mixture to the same procedure raised the proportion of $6 \le 1$ at the expense of $1 \le 1$ and $5 \le 1$. At 420°C in the flow system, $1 \le 1$ was cleanly converted into $6 \le 1$ as the sole product. These results indicate that, at 370°C, $1 \le 1$ rearranges to the diene $5 \le 1$, which on further heating affords the allene $6 \le 1$ at present it is not clear if a small portion of $6 \le 1$ are in accord with the proposed structures.


9

10

11

12

13

14

Unlike 1, the propellane 2 withstood the conditions of the flow pyrolysis at 370°C. However, at 430°C a 1:3 mixture of 2 and 1,2-divinylcyclopropene (7) was isolated. Structure proof for 7 rests on its spectroscopic data. 7 showed a high propensity to polymerize. But in C_6D_6 under nitrogen, it could be stored in the refrigerator for at least a week.

Recently it has been reported that at $114^{\circ}C$ [1.1.1]propellane $\underline{3}$ isomerized to give 3-methylenecyclobutene ($\underline{8}$).⁴ The low temperature of this reaction, the structure of the product and our above-mentioned observations seem to suggest that $\underline{8}$ is the result of a catalyzed isomerization of $\underline{3}$. Indeed, in the flow system at 430°C, $\underline{3}$ was converted into dimethylenecyclopropene ($\underline{9}$) as the only product. 9 was identified by its NMR spectra.⁵

Retention of the central C-C bond of the [1.1.1] propellane framework can be recognized as a common feature of the thermal isomerization of $\underline{1}$, $\underline{2}$ and $\underline{3}$. For $\underline{3}$, an orbital symmetry allowed $[\sigma_{2}s + \sigma_{2}a]$ process could lead to $\underline{9}$.⁶ In contrast, the concerted conversion of $\underline{1}$ into $\underline{5}$ should be unfavorable with respect to orbital symmetry considerations. The favorable $[\sigma_{2}s + \sigma_{2}a]$ path would lead to the short-lived intermediate $\underline{10}$, which could undergo a dimethylenecyclopropane rearrangement⁷ affording (via diradical $\underline{11}$) the more stable diene $\underline{5}$. Under more forcing reaction conditions, this process seems to be reversible. Breaking the C-6-C-7 bond of $\underline{10}$ to give the diradical $\underline{12}$ and forming a new C-C bond between C-2 and C-6 could yield the allene $\underline{6}$.

Bicyclo[4.1.0]hepta-1,5-diene ($\underline{13}$) is the obvious precursor of the triene $\underline{7}$, which is formed from $\underline{13}$ by an electrocyclic ring-opening reaction. As with diene $\underline{5}$, it is not clear, if $\underline{13}$ is produced directly from $\underline{2}$ or if the diene $\underline{14}$ is an intermediate in this process.

Acknowledgement

This work was supported by the <u>Deutsche Forschungsgemeinschaft</u> and by the Fonds der Chemischen Industrie.

Table 1. NMR Data of $\frac{4}{2}$ - $\frac{7}{2}$ and $\frac{9}{2}$ (δ Values)

- $\frac{4}{2}: \quad {}^{1}\text{H} (C_{6}\text{D}_{6}): 1.38 1.75 \text{ (m, 2 H), } 1.83 2.19 \text{ (m, 4 H), } 2.91 3.14 \text{ (m, 2 H), } 5.14 \text{ (t, } J = 4 \text{ Hz, 1 H), } 5.80 \text{ (broad s, 1 H).} \\ {}^{13}\text{C} (C_{6}\text{D}_{6}): 23.44, 23.75, 24.44, 37.01 \text{ (4 t), } 109.37, 125.91 \text{ (2 d), } 141.36, 148.72 \text{ (2 s).}$

- $\underline{\underline{7}}: {}^{1}\text{H} (C_6\text{D}_6): 1.18 \text{ (s, 2 H), 5.25 (dd, J = 2 Hz and J = 9 Hz, 2 H), 5.38 (dd, J = 2 Hz and J = 17 Hz, 2 H), 6.46 (dd, J = 9 Hz and J = 17 Hz, 2 H). \\ {}^{13}\text{C} (C_6\text{D}_{12}): 5.62, 122.60 (2 t), 125.35 (d); the signal of C-1 and C-2 could not be identified with certainty. }$
- $\underline{9}$: ¹H (Et₂0): 1.58 (m, 2 H), 5.27 (m, 2 H), 5.50 (m, 2 H). ¹³C (Et₂0/CDCl₃): 101.38 (t), 124.80 (s); the signal of C-3 could not be identified with certainty.

References:

- 1) K. Semmler, G. Szeimies and J. Belzner, J. Am. Chem. Soc. 107, 6410 (1985).
- K. B. Wiberg, S. T. Waddell and K. Laidig, <u>Tetrahedron Lett</u>. <u>1986</u>, 1553. E. Honegger, H. Huber, E. Heilbronner, W. P. Dailey, and K. B. Wiberg, <u>J. Am. Chem. Soc</u>. <u>107</u>, 7172 (1985). K. B. Wiberg, W. P. Dailey, F. H. Walker, S. T. Waddell, L. S. Crocker, and M. D. Newton, ibid. <u>107</u>, 7247 (1985).
- 3) J. Belzner and G. Szeimies, unpublished.
- 4) K. B. Wiberg and F. H. Walker, <u>J. Am. Chem. Soc</u>. <u>104</u>, 5239 (1982).
- 5) R. Bloch, P. Le Perchec and J.-M. Conia, <u>Angew. Chem.</u> <u>82</u>, 810 (1970); <u>Angew. Chem., Int.</u> <u>Ed. Engl.</u> <u>9</u>, 798 (1970).
- R. B. Woodward and R. Hoffmann, <u>Angew. Chem. 81</u>, 797 (1969); <u>Angew. Chem., Int. Ed. Engl.</u> <u>8</u>, 781 (1969).
- J. J. Gajewski, "Hydrocarbon Thermal Isomerizations", Academic Press; New York, London, Toronto, Sydney, San Francisco, 1981, pp 77 - 80, and references therein.

(Received in Germany 8 September 1986)